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Abstract A model reaction scheme in which two species A and B react to form
an inert product is considered, with the possible linear decay of A to a further inert
prduct also included. The reaction between A and B is maintained by the input of A
from the boundary which keeps A at a constant concentration. The cases when B is
immobile or free to diffuse are treated. In the former case reaction fronts in B are seen
to develop. Large time asymptotic solutions are derived which show that these fronts
propagate across the reactor at rates proportional to t1/2 or log t (t is a dimensionless
time) depending on whether the extra decay step is included. A similar situation is
seen when B can diffuse when the linear decay step is not present. However, when this
extra step is included in the reaction scheme the reaction zone reaches only a finite
distance fronm the boundary at large times.

Keywords Quadratic reaction · Boundary input · Reaction fronts ·
Large time asymptotics

1 Introduction

Propagating reaction fronts play an important role in generating spatio-temporal struc-
tures in reaction–diffusion systems. Perhaps the most basic are those based on auto-
catalytic reactions whereby a reactant present initially is converted to an autocatalytic
product, resulting in the development of a constant form travelling wave propagating
with a constant speed. The Fisher–Kolmogorov wave [1,2] is a generic example, being
based on quadratic autocatalysis, was the first to be studied in detail. This fundamental
concept has been extended to systems based on cubic autocatalysis [3–5] and to more
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general orders of autocatalysis [6]. The inclusion of a terminating or decay step in the
reaction scheme can substantially modify both the structure and propagation speed of
the reaction front and can also lead to propagation inhibition [7,8].

Alternative mechanisms for the initiation of propagating reaction waves are based
on excitable systems with perhaps the most studied being those based on the Belousov–
Zhabotinsky reaction [9–11]. In these cases a sufficiently large perturbation to the
uniform initial state is required to trigger propagation. This can, depending on the
reaction kinetics, be either as a single pulse, where the system returns to its original
state, or a propagating wave train, where the reaction is repeatedly fired. In higher
dimensions this can lead to target patterns.

These previous studies have assumed an initial uniform distribution of the reactant
with a perturbation to this state being made locally and the reaction wave then propa-
gating away from this site. Here we consider a somewhat different situation whereby
the propagation of the reaction front is maintained by the input of a reactant from
the boundary. Our model has some similarities with catalyst pellets [12,13] where a
reaction within the pellet can be sustained by conditions imposed on the boundary.
However, our reaction scheme is basically different to those usually assumed for cata-
lyst pellets, in that here we assume that the system is isothermal and that we have two
reactants A and B (say) which react to form an inert product AB. We further assume
the possibility of the reactant A being able to decay to another inert product. In other
words our reaction scheme allows only for the depletion of both reactants A and B.

Initially we take the reaction region to be filled with the reactant B with the reaction
initiated by the input of A from the boundary, which we assume to be a reservoir that
can maintain reactant A at a constant concentration A0 on the boundary. Our model is,
to some extent, motivated by our previous work on the effects of a complexing agent
on autocatalytic reaction fronts [14] and to this end we further assume that the reactant
B is made up of large molecules relative those of A. This leads us to take B as either
totally immobile or, if it can diffuse, to do so at a rate much slower than that of A. As
a consequence of this, we take the reaction boundary to be impermeable to B.

Under these modelling assumptions we find that a reaction front in B can spread
from the boundary. When B is assumed immobile, the rate of propagation depends
on whether A decays or not. Without this extra decay step the propagation rate is
proportional to t1/2, where t is a (dimensionless) time, whereas with the decay step
a constant concentration profile of A is attained at large times with a reaction with
B spreading at a rate proportional to log t . When B can diffuse, a similar situation is
found when there is no decay of A. However, when A can also decay, steady profiles
in both A and B are seen near the boundary with a diffusional spread of B further
away from the boundary. We start by describing our model.

2 Model

Our model is based on the simple reaction whereby reactants A and B combine to
form the product AB

A + B → AB rate: k0 ab (1)
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where a and b are respectively the concentrations of the reactants A and B and k0 is
a rate constant. We also assume that there can be a linear degradation of reactant A to
an inert product

A → Products rate: kd a (2)

We take planar geometry, with reactions (1, 2) then leading to the equations

∂a

∂t
= DA

∂2a

∂x2 − k0ab − kda (3)

∂b

∂t
= DB

∂2b

∂x2 − k0ab (4)

where DA and DB are respectively the diffusion coefficients of the reactants A and B
and x is our spatial variable.

We assume that initially there is no reactant A present within the reaction domain
which is filled only with the reactant B at a constant concentration B0. The reactant
A is supplied from a reservoir that can maintain a constant concentration A0 at the
boundary of the reactor. Both B and the product AB are assumed to be large molecules
compared to the reactant A thus it is reasonable to assume that the reactor boundary
is impermeable to B. This leads to the initial and boundary conditions

a = 0, b = B0 at t = 0 (0 < x < ∞) (5)

a = A0,
∂b

∂x
= 0 at x = 0 (t > 0) (6)

We can make Eqs. (3–4) dimensionless by writing

a = A0a, b = B0b, t = (k0 A0)t, x = x

(
k0 A0

DA

)1/2

(7)

Then, on dropping the bars for convenience, this gives the dimensionless reaction–
diffusion equations for our model as

∂a

∂t
= ∂2a

∂x2 − δab − βa (8)

∂b

∂t
= D

∂2b

∂x2 − ab (9)

on 0 < x < ∞, t > 0, with

a = 1,
∂b

∂x
= 0 at x = 0 (t > 0), b = 1, a = 0 at t = 0 (0 < x < ∞)

(10)
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We apply the further condition that

∂a

∂x
→ 0,

∂b

∂x
→ 0 as x → ∞ (t > 0) (11)

The dimensionless parameters in Eqs. (8, 9) are defined as

δ = B0

A0
, β = kd

k0 A0
, D = DB

DA

The parameter β gives a measure of the rate of degradation of the reactant, δ is a
dimensionless measure of the the initial concentration of the reactant B relative to A
and D is the ratio of the diffusion coefficients.

A basic assumption behind our model is that the reactant B is relatively immobile
relative to the reactant A resulting in the diffusion coefficient ratio D being small.
We start our discussion of the problem given by Eqs. (8, 9) subject to (10, 11) by
considering the case when B is totally immobile, i.e. taking D = 0, treating first the
case when there is no reactant degradation, β = 0. We then discuss the cases when
there is reactant degradation, β > 0, and when the reactant B can diffuse, D > 0.

3 Reactant B immobile, D = 0

3.1 No reactant degradation, β = 0

We note that, in this case, b = e−t on x = 0. The problem given by (8–11) was
solved numerically using the same technique that we have used previously for solving
this type of reaction–diffusion problem, see [15–17] for example. The only difference
being that here we used a predictor–corrector method to solve the ordinary differential
equation that results when D is put to zero in Eq. (9). Our numerical solutions for this
case show that the reactant A starts to spread across the reactor from the boundary
input and continues to spread further as time increases. A front develops in B which
also spreads from the boundary and in which b changes from zero (fully reacted) to
its initial state (b = 1) over a relatively narrow region. It is in this thin region where
reaction (1) takes place with this reaction zone moving further from the boundary as t
increases. We illustrate this behaviour in Fig. 1 where we give profile plots of a and b
for δ = 1.0 (similar behaviour was found for other values of δ tried). We describe this
movement of the reaction zone by calculating xs , the position where b = 0.5, and Ia ,
the total amount of A produced at a given time. These are plotted against t in Fig. 2a
where we see that they both increase monotonically with t .

3.1.1 Asymptotic solution for t large

The profile plots shown in Fig. 1 indicate that, for t large, there are two regions, an inner
(fully reacted) region 0 ≤ x < c(t), with c(t) increasing with t and to be determined,
in which b = 0 and a decreases from its boundary value and a front (reaction) region,
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Fig. 1 Concentration profiles of A and B calculated from a numerical integration of equations (8, 9) subject
to (10, 11) for δ = 1.0, β = 0.0 and D = 0 at time t = 2056.5

where a is small and b changes to its outer value b = 1. In the inner region we put
η = x/c(t) and, with b = 0, we obtain from Eq. (8)

∂2a

∂η2 + (c ċ) η
∂a

∂η
= c2 ∂a

∂t
(12)

Equation (12) requires that (c ċ) be a constant for t large, which leads us to look for a
solution of equation (12) by expanding

c(t) = 2c0t1/2 + · · · , a(η, t) = a0(η)+ · · · (13)

The leading-order behaviour, given by

a′′
0 + 2c2

0 η a′
0 = 0, a0(0) = 1 (14)

where primes denote differentiation with respect to η. We solve (14) subject to the
condition that a0(1) = 0, i.e. a = 0 at x = c(t) to leading order, finding

a0 = 1 − 1

I0

η∫
0

e−c2
0s2

ds (15)

where

I0(c0) =
1∫

0

e−c2
0s2

ds = 1

c0

c0∫
0

e−s2
ds
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Fig. 2 Plots of the position of the reaction xs and the amount of A formed Ia against a t and b t1/2 for
δ = 1.0, β = 0.0 and D = 0

From (15), a ∼ d0(1 − η)+ · · · as η → 1 from below, where d0 = e−c2
0/I0. This

suggests that, for the reaction region, we put

x = x + c(t) = x + 2c0t1/2 + · · · , a = t−1/2 f (x, t) (16)
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Applying (16) in Eqs. (8, 9) then gives

(c0 + · · · ) ∂b

∂x
− f b = t1/2 ∂b

∂t
∂2 f

∂x2 − δ f b = ∂ f

∂t
− t−1/2(c0 + · · · )∂ f

∂x
− 1

2
t−1 f (17)

subject to, on matching with the inner region,

b → 0, f ∼ − d0

2c0
x + · · · as x → −∞, f → 0, b → 1 as x → ∞ (18)

The leading-order problem is

c0b′ − f b = 0, f ′′ − δ f b = 0 (19)

where primes now denote differentiation with respect to x . We can combine equa-
tions (19), integrate and apply the conditions as x → ∞ to obtain

f ′ + δc0(1 − b) = 0 (20)

Applying the conditions as x → −∞ then gives

− d0

2c0
+ δc0 = 0, or δ = e−c2

0

2c2
0 I0(c0)

(21)

Expression (21) is an implicit relation for c0 in terms of δ. A graph of c0 plotted against
δ obtained from (21) is shown in Fig. 3. This shows that c0 decreases as δ is increased,
having c0 ∼ (2δ)−1/2 + · · · for δ large.

Our asymptotic theory shows that, at large times, the inner region and the reac-
tion zone spread from the boundary at rate proportional to t1/2 and that the reaction
zone, in which A reacts with B has as an O(1) thickness with the concentration
of A being small, of O(t−1/2). From (13), xs ∼ 2c0t1/2 + · · · and from (15)

Ia ∼ (1 − e−c2
0 )

c0 I0
t1/2 + · · · . As a check on this behaviour we plot xs and Ia obtained

from our numerical integration for δ = 1.0 against t1/2 in Fig. 2b. We see that both plots
give straight line behaviour for the larger values of t . Also, for δ = 1.0, we find that
Eq. (21) gives c0 = 0.62006, consistent with the slope of 2c0 for xs shown in Fig. 2b.

We next consider the case when the reactant A can be degraded through reaction
(14), i.e. the case when β �= 0. We still assume that the reactant B is immobile, D = 0.

3.2 Reactant degradation, β �= 0

In this case the concentration of reactant A approaches a steady state as t increases.
A front in the reactant B again forms in which b changes from its fully reacted state,
b = 0, to it initial state, b = 1, over a relatively narrow region. This front propagates
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Fig. 3 A plot of c0 against δ given by Eq. (21), the position of the reaction zone xs ∼ 2c0t1/2 for t large
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Fig. 4 Concentration profiles of A and B calculated from a numerical integration of equations (8, 9) subject
to (10, 11) for δ = 1.0, β = 0.5 and D = 0 at time t = 32,250

very slowly from the boundary. We illustrate this in Fig. 4 with profile plots of A and
B for β = 0.5 and δ = 1.0. We see that the two profiles have become largely separated
from each other at this large time. To show that the concentration of A approaches a
steady state we plot Ia against log t in Fig. 5a for representative values of β and again
for δ = 1.0, where we see that Ia approaches a constant value, dependent on β, as
t increases. The rate of approach to this steady state becomes slower as the value of
β is decreased, as might be expected. To indicate how the front in B propagates we
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Fig. 5 Plots of a the amount of A formed Ia , b the position of the reaction zone xs against log t for δ = 1.0,
β = 0.05, 0.1, 0.5 and D = 0

plot xs against log t in Fig. 5b for the same parameter values. We see that the curves
have a constant slope, again dependent on β, at large times. This indicates that xs is
of O(log t) for t large.

3.2.1 Asymptotic solution for t large

As t increases the concentration of A approaches a steady state a = a(x) and a front
in the reactant B propagates slowly across the region. From Eq. (8) with b = 0 and
boundary conditions (10),
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a(x) = e−√
β x as t → ∞ (22)

and then, from equation (9)

b = exp(−t e−√
β x ) (23)

Note that this solution has b → 0 as t → ∞ for any finite x . To obtain more
information about the propagating front in B we note that (23) has b 	 0 up to where

t e−√
βx is O(1), or x ∼ 1√

β
log t (24)

This suggests that we put

x = 1√
β

log t + ξ, ξ of O(1) (25)

for the propagating front, with (22, 23) then giving

b = exp(−e−√
β ξ ), a = t−1 e−√

β ξ (26)

In (26) b → 0 as ξ → −∞ and b → 1 as ξ → ∞.
Expressions (26) suggest that for this front region we put a = t−1 F(ξ, t), leaving

b unscaled. If we substitute this and expression (25) into Eqs. (8, 9) with D = 0 and
look for a solution by expanding in inverse powers of t , we find that the leading-order
terms (F0(ξ), b0(ξ)) satisfy

F ′′
0 − δF0b0 − βF0 = 0, b′

0 − √
β F0b0 = 0 (27)

subject to the conditions in (26) as ξ → −∞, and with F0 → 0, b0 → 1 as ξ → ∞,
where primes now denote differentiation with respect to ξ . We can combine Eqs. (27)

if we put ψ = −
∫ ∞

ξ

F0(y)dy, then

b0 = e
√
β ψ, ψ ′′ + δ√

β
(1 − e

√
β ψ)− βψ = 0 (28)

We can solve Eq. (28) for ψ subject to

ψ → 0 as ξ → ∞, ψ ′ ∼ e−√
βξ as ξ → −∞ (29)

and hence calculate b0. A plot of b0(ξ) is given in Fig. 6 for β = 0.05 and β = 0.5,
showing that the spread of the reaction front decreases as β is increased, as might be
expected from (26).

From our analysis Ia → β−1/2 as t → ∞ consistent with the asymptotic values
seen in Fig. 5a. We note that this asymptotic result is independent of δ, as might be
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Fig. 6 Plots of b0(ξ) determined by (28, 29) for β = 0.05, 0.5

expected since this steady state in A is really a balance between the diffusive spread
of A from the boundary and its decay through reaction (2). From (25)

xs ∼ 1√
β

log t as t → ∞ (30)

Expression (30) shows that the slope of the plots of xs against log t shown in Fig. 5b
should have a slope of β−1/2, as appears to be the case for these plots.

4 Complexing agent able to diffuse, D > 0

We now assume that the reactant B is free to diffuse, though more slowly than the
reactant A. Thus we take only relatively small values for the diffusion coefficient ratio
D. As before we start by considering the case when there is no degradation of the
reactant B.

4.1 No reactant degradation, β = 0

The situation in this case is similar to the previous case when the reactant B was
immobile. We illustrate this in Fig. 7a where we give profile plots of A and B for
D = 0.1 and δ = 1.0 to compare with Fig. 1. Again we see that there is a region near
the wall where the concentration of A decreases almost linearly and in which b = 0.
There is a relatively thin reaction zone where the concentrations of both A and B are
small and a final region where the concentration of A is zero and the concentration
of B increases to its outer state, b = 1. The only difference between the two cases,
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Fig. 7 a Concentration profiles of A and B calculated from a numerical integration of equations (8, 9)
subject to (10, 11) for D = 0.1, δ = 1.0, β = 0.0 at time t = 18481.8. b Plots of the position of the
reaction xs and the amount of A formed Ia against t1/2

Figs. 1 and 7a, is that the spread of the concentration of B in the final region is a little
greater when B is allowed to diffuse. Again the concentration of A spreads from the
wall at a rate of O(t1/2) for t large. We illustrate this in Fig. 7b with plots of xs and
Ia against t1/2, both showing a constant slope for t large. If we compare the slopes of
the plots in Figs. 2 and 7b, we find that they are very similar. This suggests that the
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reactant A and the reaction zone moves away from the wall at about the same rate in
both cases, at least for this value of δ.

4.1.1 Asymptotic solution for t large

In this case we find that there is a three-region structure to the solution for t large.
There is an inner (diffusive) region as before where b = 0 and the solution for a is
given by (12–15). There is an outer (again diffusive) region where a = 0 and in which
we put η = x/c(t), where x is defined in (16) and c(t) in (13). Equation (9) then gives

D
∂2b

∂η2 + (η + 1)cċ
∂b

∂η
= ∂b

∂t
(31)

The leading-order problem is

Db′′
0 + 2c2

0(η + 1)b′
0 = 0 b0 → 1 as η → ∞ (32)

where primes now denote differentiation with respect to η. We solve (32) subject to
the condition that b0 = 0 at η = 0, i.e. at x = c(t) to leading order. Thus

b0(η) = 1 − 1

I1

∞∫
η

e−c2
0(s

2+2s)/D ds (33)

where

I1(c0, D) =
∞∫

0

e−c2
0(s

2+2s)/D ds =
√

D ec2
0/D

c0

∞∫

c0/
√

D

e−s2
ds

From (33),

b ∼ 1

I1
η + · · · = t−1/2

2c0 I1
x + · · · for x small (34)

A central (reaction) region is required which matches with both the outer and inner
regions and in which reaction (1) has a significant effect. For this region we put

a = t−1/3 F(ζ ), b = t−1/3 G(ζ ), ζ = x t−1/6 (35)

Applying (35) in Eqs. (8, 9) gives

∂2 F

∂ζ 2 − δFG = ∂F

∂t
− t−2/3

(
1

3
F + 1

6
ζ
∂F

∂ζ

)
− t−1/3 (c0 + · · · ) ∂F

∂ζ
(36)

D
∂2G

∂ζ 2 − FG = ∂G

∂t
− t−2/3

(
1

3
G + 1

6
ζ
∂G

∂ζ

)
− t−1/3 (c0 + · · · ) ∂G

∂ζ
(37)
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subject to, from (18) and (34),

F ∼ − d0

2c0
ζ + · · · , G → 0 as ζ → −∞,

F → 0, G ∼ 1

2c0 I1
ζ + · · · as ζ → ∞ (38)

The leading-order problem is

F ′′
0 − δF0G0 = 0, DG ′′

0 − F0G0 = 0 (39)

subject to (38) and where primes denote differentiation with respect to ζ . Combining
the equations in (39), integrating and applying the boundary condition as ζ → −∞
gives

F ′
0 − DδG ′

0 = − d0

2c0
(40)

Now applying the condition in (38) as ζ → ∞ leads to

− Dδ

2c0 I1
= − d0

2c0
or δ = e−c2

0 I1

DI0
(41)

It is relation (41) that determines c0 implicitly in terms of δ. We note that I1 ∼ D

2c2
0

for D small and applying this in (41) we recover (21) as D → 0. We plot c0 against δ
obtained from expression (41) in Fig. 8 for a range of values of D. There is very little
difference in the values of c0 for the smaller values of δ, it is only for the larger values
of δ that any real difference is seen as the value of D is changed. We note that, for
D = 0.1 and δ = 1.0, we find a value for c0 of 0.5936 close the value quoted above
when D = 0. This provides the reason why we found in our numerical integrations
that the spread of the reaction region was similar in both these cases.

4.2 Reactant degradation, β �= 0

We illustrate this case with plots of the concentrations of A and B in Fig. 9a for
β = 0.5, D = 0.1, δ = 1.0 to compare with Fig. 4 for D = 0. We highlight the
reaction region, where the concentrations of A and B are nonzero, in Fig. 9b. As before
the concentration of A approaches a steady state as t increases and remains attached
to the wall. We show this in Fig. 10a with plots of Ia against log t for representative
values of β. As previously our numerical results indicate that the spread of A from
the wall increases as the value of β is decreased. In this region near the wall where A
decreases to zero, the concentration of B reduces to zero. If we compare Fig. 9a with
Fig. 4 we see that the spread of B is much greater, more diffusive, for D = 0.1 than
for D = 0. However, we find a difference with the previous, D = 0, case in that the
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Fig. 8 Plots of c0 against δ given by Eq. (41) for D = 0.01, 0.1, 0.5, the position of the reaction zone
xs ∼ 2c0t1/2 for t large

spread of xs , the position where b = 0.5, is no longer logarithmic with t , as seen in
Fig. 5b, but appears to increase like t1/2. We show this in Fig. 10b with plots of xs

against t1/2 for different values of β, with the curves becoming straight lines for the
larger values of t . This t1/2 spread is perhaps to be expected as the values of xs are
calculated in the region where a = 0 and B is purely diffusing.

If we examine how the reaction zone evolves in more detail we find that initially
it spreads from the wall as the concentration of B decreases there. However, for very
large times the region where the concentrations of both A and B are nonzero appears
to reach a constant position, not spreading any further from the wall, unlike the D = 0
case where a definite, though slow, spread of the reaction zone can clearly be seen in
the numerical simulations.

4.2.1 Asymptotic solution for t large

For large times the structure of the solution consists of an inner region of O(1) thickness
where a reaches a steady state and a much thicker outer region of O(t1/2) thickness,
see Fig. 10b, where a = 0 and B spreads purely by diffusion. In this outer region
Eq. (9) reduces to the diffusion equation which then has the solution

b = 1 − 1√
πD

∞∫
η

e−s2/4D ds where η = x

t1/2 (42)

on satisfying the condition that b = 0 at x = 0 (the inner edge of the outer region).
From (42)
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Fig. 9 a Concentration profiles of A and B, b with an inset to show the reaction zone, calculated from
a numerical integration of equations (8, 9) subject to (10, 11) for D = 0.1, δ = 1.0, β = 0.5 at time
t = 74,236

b ∼ x√
πD

t−1/2 + · · · for x small (43)

Expression (43) indicates that for the inner region we have, at leading order,

a → e−√
βx , b = t−1/2 G(x) (44)

where G satisfies

DG ′′ − e−√
βx G = 0, G ′(0) = 0, G ∼ x√

πD
as x → ∞ (45)
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Fig. 10 a The amount of A formed Ia plotted against log t , b the position of the reaction xs plotted against
t1/2 for D = 0.1, δ = 1.0, β = 0.1, 0.5, 1.0

Equation (45) can be solved in terms of Bessel functions [18] by writing

y = 2√
βD

e−√
βx/2 to obtain

G ′′ + 1

y
G ′ − G = 0 (46)

subject to

G ′ = 0 at y = 2√
βD

, G ∼ − 2 log y√
βDπ

+ · · · as y → 0 (47)
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where primes now denote differentiation with respect to y. Equation (46) has the
solution

G(y) = 2√
βDπ

(
K0(y)+ K1(y0)

I1(y0)
I0(y)

)
where y0 = 2√

βD
(48)

From (45) we see that the reaction (1) between A and B plays no part, at least to
leading order, in the large time development of the solution. In fact, as in the previous
case when D = 0, the large time structure is mainly the interaction between the
diffusive spread of A from the boundary and its degradation through reaction (2), the
depletion of A and B near the boundary through reaction (1) being a second-order
effect.

The form of the concentration profile for B seen in Fig. 9 is apparent from expression
(48). For the parameter values used for Fig. 9, y0 	 8.944 and, if we use the asymptotic
expressions for the Bessel functions in (48), the ratio K1(y0)/I1(y0) ∼ e−2y0/π 	
5.42×10−9 and can effectively be neglected. Thus, on the boundary x = 0 (or y = y0),

G ∼ 2
√

2

π
√
βDy0

e−y0 	 2.97 × 10−4. It is only at the outer edge of this inner region

with y close to zero that G takes O(1) values.

5 Conclusions

We have considered a basic reaction scheme whereby two species A and B (say)
react to form an inert product AB, reaction (1). We also include in our scheme the
possible linear decay of reactant A, reactant (2). With B present initially at a uniform
concentration and A being maintained at a constant concentration on the boundary,
propagating reaction–diffusion structures can develop in which B is totally consumed.
Perhaps the simplest and most robust of these reaction fronts is seen when there is
only the reaction (1) between A and B with B immobile. In this case a ‘sharp’ front in
B is seen which propagates from the boundary, see Figs. 1 and 2. Although the front
in B shown in Fig. 1 is similar in form to other travelling wave structures, for example
in [5,4,7], in that it has an O(1) thickness, it propagates at a rate proportional to t1/2

whereas the propagation speed of autocatalytic travelling waves is of O(t), for t large.
This situation is in many ways the same when B is allowed to diffuse (though, as

part of our modelling assumptions, at a much slower rate than A), see Fig. 7a. The
differences between this case and when B is immobile is that the reaction front in B
appears less ‘sharp’ and has an outer region in which there is a diffusive spread of B
from its depleted value in the reaction zone to its outer, initial input value. Though
perhaps a more important difference is seen in the width of the reaction front which
now has an increasing thickness, being of O(t1/6) for t large, see expression (35),
whereas previously it remained of O(1).

When we also allow for the decay of reactant A via reaction (2), we again see a
propagating reaction front in B develop when B is immobile, see Fig. 4. However,
here the interplay between the reactants A and B is perhaps more subtle. Reaction B is
totally consumed near the boundary leaving only the decay of A through reaction (2)
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and the input of A from the boundary. The result is that, with b = 0, the concentration
of A reaches a steady state, as given in (22). However, the exponentially small values
of a at the edge of this region are sufficient to generate a reaction with B leading to
further depletion of B through reaction (1) and to the slow propagation of a reaction
front in B. As a consequence of the concentration of A being exponentially small at
the inner edge of this reaction front, it propagates at a rate of O(log t), see (30), thus
needing much greater times than previously to advance from the boundary. As a check
that it was these exponentially small concentrations of A that were responsible for
setting up the front in B, we artificially put a to zero when it had reached a sufficiently
small value in our numerical simulations. Again a reaction front similar to that shown
in Fig. 4 was set up, though after a while it stopped propagating when it reached the
point where we had put a to zero.

The final case that we considered was when B could diffuse and there was decay
of reactant A. Now the system evolved to give finally a constant profile for a with b
being small, of O(t−1/2), in the reaction region, expressions (44, 48). There is also an
outer region, purely diffusive region in B, see Fig. 9. At least for the smaller values
of D considered here, the solution evolves to form a structure close to the boundary
where the concentration of B is virtually zero, the thickness of this region being of
O(D−1/2) from expression (48).

In our numerical integrations we applied a zero flux boundary condition on B at
the boundary x = 0. This condition is not particularly significant. We also performed
some numerical integrations applying the condition that b = 0 at x = 0. Though the
initial development of the solution in this case had some differences with the previous
(zero flux) results, the large time structures were essentially the same. This perhaps
should be expected as we have seen the concentration of B becomes virtually zero in
all the cases we hve discussed.
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